Static Equivalent Model
Reduction in Ansys

Revision 2
10/22/2024:

o v kW

Fixed typos on slides 4- 7 (L(1-L) corrected to L-I)
_PP-D*w

Equation (5) of slide 6 corrected to express the same solution as Equation (6): 6 = SaEl

The original mistake was the result of a sign error

Corrected mis-statements about the resulting incorrect Equation (5).

Added slide 7 to address the case of differing materials.

Added summary table of results on slide 31

Added an Appendix A to justify slide 7

Added Appendix B for additional verification (Roark’s Formula lookup)

Added slides 29 and 30 for additional verification of theoretical moment and shear estimates for
solution 3 (moments and shear instead obtained from a new macro provided for model 2)

Important: The original version of this post incorrectly estimated the isolated cantilever (Equation (5) of slide 5) deflection using
shear and moment estimtes (Equations (1) and (2)). This should always match the fixed-fixed beam solution of (Equation (4)).
Comments that accompanied this error were also incorrect and corrected here. Our many thanks for Bekele Atnafu of Honeywell from
alerting us to these errors. We’d also like to extend our thanks to Pablo Alvarez of Sol Aero for suggesting using Roark’s Formulas for
additional verificiation —also now included in this revision
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I Background

e Ansys users are often tasked with calculating a complex structural system’s response at a particular location
which happens to be simpler in general than the rest of the model

 When this happens, it is tempting to perform hand-calculations —or at a minimum, to build a simpler model
of the region in question subject to an equivalent load

* While straightforward in principle, the technical support crew at PADT have discovered over the years that
customers often either encounter subtleties in the static equilibrium calculations —or the implentation of
the resulting reduced model in Ansys

* Recently, a customer presented PADT with a model similar to that shown below

thin rubber * onlyinterested in the
diaphragm seal deflection here
ttachment
(green) a
bolts (12 x)

constant pressure \
loading (p) underneatt
the diaphragm

Steel retainer
(grey) * Axisymmetric
section

* The customer was interested here in the deflection (and stress) only in the seal attachment

(which we henceforth call the ‘lip’)
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I Preliminaries

Since the customer was interested only the deformation and stress of the lipt, his question was: Can he
model just the metal steel retainer with statically equivalent loads (resolving the constant pressure
underneath the diaphragm into statically equivalent loads on the steel retainer as shown)

* retained
region

Before answering this question, we should first ask if lip

this is possible in general. If so, what are the

restrictions on such a model simplification? M F

We might start by considering a simple fixed-fixed

beam as below * half-symmetry

boundary

We know we can impose symmetry and only model w
[T C-ME
\_},{ ) ' "'*L/Z
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I Preliminaries

* ...but what we're after is much more ambitious. We're not simply utilizing symmetry to simplify a model
 We're trying to model a geometrically arbitrary (but not mechanically arbitrary) section of it as shown

below. Can we do this...?
* Modeljusttheregion L — [ < x < L while

e Isit possible to just model this imposing loads from region 0 < x < L — [

one -truncated section (with a STy
cantilever, say)? T

w

2 l
* exclude this Tl [
l

[egian * retain this

region X
4_

Vi

* Note that since we have the full analytical solution for a fixed-fixed beam, such a simplification

isn’t necessary
* We’re going through this exercise just to see ‘if it works’ in more complicated situations. Many

readers will already know the answer, but it’s worth going through the entire exercise to see

* What we want to do is apply the load contributions from the section we’re not modeling to

the section we are modeling
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I Preliminaries

e Since we're keeping section from L — [ < x < L, we can substitute x = L — [ into the analytical expressions
for for the transverse shear force and moment (which range from 0 to x=L from the left. Readers can find
the expressions here )

M = W(6Lx gy N LZ)/12 (1) ¢ The moment solution for a fixed-

fixed beam
S £ 2 (2) * The Shear force expression for a
2 fixed-fixed beam
wix? (3) . \
s R A * The transverse deflection of the fixed-
) (L —x)
24E1 fixed beam at x
FI3 MI> wl* (4)  Transverse deflection of the cantilever
0= 3E] g 2El  8E] of length | due to a combination of

uniform distributed load w, force F and
moment M (the sign of the moment
and F come from (1) and (2), while w is
considered positive downward to obtain
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https://mechanicalc.com/reference/beam-deflection-tables

Preliminaries
e Substituting in the values for M and F=V and x at x = L — [ into (4) yields:

__lZ(L-—l)Zmz (5)
24E1

e the cantilever solution: S =

 Now, compare the solution (4) to the full fixed-fixed beam solution (3) atx = L — [:

P - DPw (6)

e the full solution @ x =L — [ s
24E]

* These are the same solutions!

e This problem was chosen as it’s the simplest satically indeterminate system we could think of

* The reason this works is that the cantilever solution (eq. 4) incorporates the Shear and
bending moment calculations (equations (1) and (2)) used in the full fixed-fixed beam
solution

* In other words, we are effectively calculating a ‘force-based’ submodel
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I Preliminaries

Prerequisites for Static Equivalent Model Reduction
e The previous simple beam example demonstrates that we can discard portions of a model we’re
not interested in IF we can characterize those portions as boundary conditions (with all degrees
of freedom at such boundaries accounted for)
* |f some stiffness components of the portion of the model we wish to exclude are negligible
compared with the stiffness of the retained portion, we can relax the strict requirements above

somewhat.
* For example: if the beam section 0 < x < L — [ is made of rubber, while the beam section L —
[ < x < L is made of steel, the first section could be thought of simply transmitting a transverse

load to the latter section

e Asanillustration: if all regions of the model may be characterized by a linear constitutive law,
and if the elastic modulus of the excluded region << than that of the retained region, we may
approximate the shear and moment (1) and (2) as:

V=W<g—x> W(Lz 2

> w(6Lx — 6x? — L?) w(L — 1)?
e 12 ! 12

We Make Innovation Work
www.padtinc.com




I Preliminaries

Prerequisites for Static Equivalent Model Reduction

* Some readers may wonder when an approximation of the type made on the previous slide
can be made.

* To provide more guidance, we offer a detailed derivation of a fixed-fixed beam system
modeled by coupling two cantilevers using Lagrange Multipliers in the Appendix

* Even without consulting this solution, however, its quite clear that when all regions have the
same elastic modulus, this appoximation results in a shear that is 33% higher than the true
value. The moment, however, is a factor of 16 too high (these numbers are the reciprocals of
F/F, and M /M, reported in the Appendix, respectively for the case E; = E,).

* So, there are essentially three prerequisites here for excluding a region with a different material
than the retained region:

1. The stiffness components, ke of the excluded region of the model associated with unaccounted
degrees of freedom, must be much less than the stiffness of the retained region, kr (ke << kr) in
order to be negligible while still transmitting loads (assuming we can’t resort to a closed form
solution encompassing both excluded and retained regions)

2. The load path of the full model must be known and faithfully reproduced in the reduced model

3. The retained model for which we calculate statically equivalent loads must behave linearly
(which is not a requirement for the excluded region if we can solve its differential equation)
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Common Mistakes

* Before continuing, we should address some common mistakes engineers make when
calculating force and moment equilibrium in engineering structures, so we’ll be careful to

avoid these mistakes going forward
* Calculating moment reactions for statically indeterminate systems

* Because a distributed load may be represented by an equivalent force acting at the
distribution centroid, its useful to reduce a structure with constant distributed load to

one with an equivalent concentrated load
* But see what happens when you do this to a fixed-fixed beam...

F F &
> L2 - Lf2 2
I< pl|
‘ My ‘—:- x * ‘ Mg

2 b
* Considering M 2 Ms
half-symmetry: C
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https://engineeringstatics.org/distributed-loads.html
https://engineeringstatics.org/distributed-loads.html

I Common Mistakes

e C(Calculating moment reactions for statically indeterminate systems

* Equation (8) is wrong! Furthermore, the calculated midspan moment magnitude wL? /4 in equation (7) is
wrong, and M cannot be solved from M;. Both errors are due to the fact that this problem is statically
indeterminate!

* We could summarize the fundamental mistakes as follows:

1. The shear/moment reactions of the beam with the uniform distributed load is not the same as the
one with the concentrated point load (you can quckly compare the two solutions here), so the
move from [1] to [2] is wrong, but only because the problem is statically indeterminate. For
determinate systemes, this is a perfectly valid move.

2. Equating M and M, (as pointed out above). Interestingly, although this is incorrect, it produces the
correct moment magnitude at the boundaries (For [2]. Not for [1]. Even if the directions are wrong)

* The solution to this problem is to calculate shear and moments at boundaries using the
appropriate beam-deflection solution (for a fixed-fixed beam under distributed load in this
case). It is precisely the solutions for a fixed-fixed beam which tell us the solutions of the
previous slide are wrong

* Treating an axisymmetric shell like a beam

* We will be calculating forces and moments for the retained portion of the diaphragm
model (see slides 2 and 3) —which happens to be an axisymmetric membrane or plate
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https://www.purdue.edu/freeform/me323/wp-content/uploads/sites/2/2022/03/week08-notes.pdf
https://www.purdue.edu/freeform/me323/wp-content/uploads/sites/2/2022/03/week08-notes.pdf
https://mechanicalc.com/reference/beam-deflection-tables

Common Mistakes

* Treating an axisymmetric shell like a beam

* Because of its simplicity, it is tempting to treat the axisymmetric diaphagm as a beam problem
* Thisis wrong! A correct analytical expression of the moment can only be found in the solution of
a clamped axisymmetric plate under uniform pressure load (assuming it carries moments. See

pages 166 — 167)

* Even if the diaphragm structure
could be analyzed as a beam
model (in which case, it would

A be a clamped roller-fixed

* retained region beam), we still have the same

_ problem of static

¥ excluded regiaq indeterminacy as we face with

VAN R the fixed-fixed beam
/AR N \ // : _

C/ / r \\\\ | ‘ Just as the solution there was
M ' {Td/M

to turn to Euler-Bernoulli beam
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ e kM P theory, the solution here is to
p : ® turn to plate theory*
F M= FR « Thiswrong!

2 ' *beams simply don’t work here.
F =prR? * Thisiscorrect: Consider: How would one characterize

the area moment of inertia (what
m (FgakenneEEnagn: value would it take on at r=0)?
www.padtinc.com



https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/Part_II/06_PlateTheory/06_PlateTheory_Complete.pdf
https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/Part_II/06_PlateTheory/06_PlateTheory_Complete.pdf

Common Mistakes

e Considering only force equilibrium (while neglecting moment equilibrium)

 Some engineers will be tempted to believe that they can simply account for the excluded region
(the working diaphragm) by accounting only for its axial force over the remaining diaphragm
attachment region with a scaled pressure over that region

* excluded region

Hl

R
r

TR

F = pnR"™

e This will underpredict the response of the retained structure by neglecting the moment
contribution of the excluded region

We Make Innovation Work
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The Model
 Rubber Diaphragm

o We'll first build a 1/6-symmetry (60°) finite element model of the structure described on slide 2

* We use shell elements for the diaphragm and solid elements for the retainer

 We use a 3-parameter Mooney-Rivlin material model for the rubber, and the default linear properties of
structural steel

* Retainer: solid | R
elements (structural
steel material)

v
|>o

* working
diaphragm: shell
elements (rubber

material - 1 mm
thick)

A 4

diaphragm connects directly

_ R"=28.2 mm
0,000 10.000 to rqxﬁl(rpmgr (no ContaCt) R= 32 mm
R=38.5mm
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Model 1: Rubber Diaphragm
 Rubber Diaphragm

« The model is fully fixed at the bolt holes as shown and pressure of 0.1 MPa is
applied underneath the diaphragm

A: 176 sym metry rubber shelll diaphragm

A: 176 sym metry rubber shelll diaphragm +
Total Deformation

Static Structural

Tirme: 1.5 Type: Total Deformation
B/31/2024 1:15 PR Unit: ram
Tirne: 15 °

. Pressure: 0.1 MPa

. Fixed Support 831/2024 1:18 Phd

8.4877 Max
75448
66015
5.6585
4.7154
3773
28292
1.8862
094308
0 Min

A: 116 symmetry rubber shelll diaphragm
Static Structural
Time: 1.5

1 Unit: mm
83172024 1:15 PM

Tirme: 1s
. Pressure: 01 MPa
. Fixed Support

0.0024578
0.0021506
0.0073433
0.0015361
0.0072289
0.00092167
0.00061445
0.00030722
0 Min

We next want to build a model
of JUST the ratainer (the
‘retained’region) and apply a
statically equivalent load
transmitted by the (excluded)
diaphragm

We Make Innovation Work
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A: 1/6 symmetry rubber shelll diaphgagm
Total Deformation 2

Type: Total Deformation

B/31/2024 1:18 PM

0.002765 Max

Total deflection of
the diaphragm is ~
8.5 mm

* But this (below) is the
result we're interested in
Maximum deflection of the
lip feature is 0.0028 mm




Model 2: Linearly Elastic Diaphragm
e Assuming the diaphragm carries a moment load

e Startinginslide 21, we’ll consider how to create a statically equivalent model for a diphgragm which transmits moment
loads

*  We start by creating a new 1/6-symmery model (we simply duplicate the original in Ansys)

* Then replace the diaphragm material with a linear one. We just create a dummy elastic material whose Young’s Modulus
is 1/1000 that of steel (recall, that for this approach to be valid, the stiffness of the excluded region must be negligible).

* Again applying the same pressure (0.1 MPa) produces the following new result

* As most readers would suspect, because the linear shell transmits the full moment of the working diaphragm, the
resulting displacement is much greater at the steel retainer. The maximum deflection at the lip § = 0.00765 mm

C: 176 symmetry dum my elsatic 1 mm shell diaphragm
Static Structural

Tirne: 1,5

9r2/2024 311 PM

C: 116 symmetry dum my elsatic 1 mm shell diaphragm
Total Defarmation 2

Type: Total Deformation

Unit: rarn

Tirme: 15

. Pressure: 0.1 MPa 9/2/2024 313 PM

. Fixed Suppart

0.0076541 Max
0.0068037
0.0059532
0.0051028
0.0042523

0.0034018
C: 1/6 symmetry dummy elsatic 1 mm shell diaphragm 0.0025514
Total Deformation '
Type: Total Defarmation 0.007009
| Unit: mm 0.00085046

Tirne: 0 Min

1.9850 Max
1.765¢2
1.5448
13239
11033
0.88262

0.66196
044131
0.22085
0 Min

We Make Innovation Work
www.padtinc.com




Solution for Model 1: Statically Equivalent Retainer Model

e Assuming the diaphragm carries no moment load

We'll first assume that, being made of rubber, the working diaphragm can not transmit any moment load

* The solution in this case is quite simple (note that the excluded region is statically determinate —so we dont’ need to
appeal to any membrane equations for the boundary reactions!)

e Below, Fjis the equivalent load due to the pressure under the lip feature (length s), while F'is the transmitted axial load
from the working diaphragm

* Moments are summed about the bolt-center radius R.

* Note that if we keep the diaphragm pressure, p under the lip in the retained model, then the only additional calculated
force we need to apply to the retained model is F = pR'? (the equivalent load F;is represented by the pressure, p. See
next slide) !

y ‘ » excluded region

ST

_ 2
Y M= FI-F(l-3)+m= —FI-RQ-2)+m=0 (10) ro

* retained region

F, = pn(R*~R")
ZF=F+F;—U=D (11)
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I Solution for Model 1: Statically Equivalent Retainer Mode|
e Assuming the diaphragm carries no moment load: Solution 1

* Substiuting in the model’s dimensions to calculate the diaphragm transmitted axial load F of ~249.8 N. But
this must be divided by 6 (below) for the 1/6-symmetry model:
* Thus a pressure of 0.1 MPa and 41.64 N are applied as shown below

o _ (0)(3.14159 .)(28.2)?

=41.64 N
6

p = 0.1 MPa

04152024 11:18 &k
. Pressure: 0.1 MPa

- Fized Support
B Force: 416391

* retained region model
F/6

We Make Innovation Work I
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Solution for Model 1: Statically Equivalent Retainer Model

* Assuming the diaphragm carries no moment load: Solution 1

* We can see how well this works in practice below
 The 1/6-symmetry retained model is identical with the retained region of the combined model (slide 15.
The retained model was created by simply copying the model of slide 15 and suppressing the diaphragm)

* Compare this solution (below left) to the full
model solution (below right)

* Retained region model § = 0.0028625 mm

* Fullmodel 6 = 0.002765 mm

D: 146 sym metry dum my elastic Tmm shelll no diaphragm A: 16 sym metry rubber shelll diaphragm
Total Deformation 2 Total Deformation 2

Type: Total Defarmation Type: Total Deformation

Unit: e Unit: mm

Tirme: 15 Tirne: 1 3

9/2/2024 11568 &AM '

8312024 1:18 P
0.0028621 Max
0.0025441
0.0022261
0.0019081
0.0059
Q.omar2
0.00095403

0.002765 Max
0.0024573
0.0021506
0.0078433
0.00153861
Q0012289
0.00092167
0.00061445
0.00030722

0 Min

0.00063602
0.0003180
0 Min
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Solution for Model 1: Statically Equivalent Model of Retainer

* Assuming the diaphragm carries no moment load: Solution 2

PADT

Some readers may find the solution of slide 5 and 6 so simple as to be trivial (and it may be)
However, compare it to the incorrect solution of slide 11 (equation (9))

Both solutions apply the same load. But by dividing this load by the lip area and applying it as a pressure as on slide 11 , the moment equilibrium
of equation (10) is not satisfied. Doing so effectively applies the load F at the location [ — s/2 (recall that for determinate systems, distributed
loads act at their centroid), which will result in a smaller response (not shown. But readers are encouraged to try this with the Workbench model

that accompanies this article)

We may test this idea further by replacing both the diaphragm pressure under the lip AND the transmitted axial load of the excluded region with

a single calculated effective axial load, f which satisfies both force and moment equilibrium

We Make Innovation Work
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lis the distance from the fixed bolt pattern
centers to the boundary of the excluded region

ZMz—fx+m=ﬂ

i

fx=Fl+F(1-3)

{F+Hm=ﬂ+ﬂ(h§)

=f—v=0

2

(F+F)l-F3

(F+F)

(12) PRI

0
(13) f I
F = pnR"™

(14) e subsltutlng{? O)into (12) B = pH{RE—R’E)
and rearranging

.]5 f:F-l'F{
(19 . substituting (11) into (14)

(16) = solving (15) forx




I Solution for Model 1: Statically Equivalent Model of Retainer

* Assuming the diaphragm carries no moment load: Solution 2

* Substituting in model dimensions to the expressions for F, F}, f, [, x, r:
* retained region model
F = prR'?> = (0.1)(3.14159 ...)(28.2)?> = 249.8 N

F, = pn(R? — R'?) = (0.1)(3.14159...)(32%2 — 28.22) = 71.87 N
f=F+F=3217N

| =R—R =385—282=103mm . _/
e seeslide 12

s=R—-R =32-282=38mm

(F+F)I-F5  (321.7)(10.3)—(71.87)%
e =4
(F+Fp) 3207

r=R—x =385 —9.88 =28.62mm

= 9.88 mm

symmetry !

X . g8 Jfprep?
“ennections 5 csys, 132 Ichange to cylindrical csys (identified as csys 12 in WB)
Aesh 10 nsel,s, loc,x, 258 .€245 Iselect nodes at r=R-x
Jamed Selections 11 nsel, r,loc, =z, 4 'reelect nodes only on bottom surface of retainer H =
static Structural (H5) 12 nrotat,all ltransform nodal coordinates to by in cylindrical system > Beca use the Ioad, f IS applled at
‘H Analysis Settings 13 Yget,nn,node, , count Iget the number of selected nodes, N . E,
=@. Pressure 14 £f,al1l1,f=,53 . €2/nn lapply requird force £/ on each node Calculated dlsta nce r" We apply It
.6 Fixed Support 15 'f£,all my,293.553/nn

= 1& allsel, .
(@ Force 17 /sela with an APDL macro (the load F and
F" Commands (APDL) 2 18

pressure p are suppressed )
We Make Innovation Work
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Solution for Model 1: Statically Equivalent Model of Retainer

* Assuming the diaphragm carries no moment load: Solution 2

* We can check this new calculated effective force f by replacing the force and pressure applied in the
previous model (we suppressed them below) with an APDL macro which applies the load f at the correct

D: 1/6 symmetry dummy elastic 1mm shelll no diaphragm
Total Deformation 2

Type: Total Deformation

Unit: rim

Tirne: 15
972720241215 P

Time: 1.5
9/1/2024 11:01 AM

[ Ficed Support

B4 Static Structural (H5)

] Analysis Settings

<@, Pressure

@ Fixed Support
r

0.0028953 Max
0.0025738
0002252
0008303
0.0016036
0.0012869
0.00096516
0.00064344
0.00032172

0 Min

suppressed and macro applied

* Comparing again (right) to the original

model (below right): Tope Total eformstion
Unit: mm
* Retained region model § = 0.002896 mm AL
* Full model 6§ = 0.002765 mm 0002765 Mex
0:0021506
00018433
. . . . . 0.0015361
* The increased error has to do with the mesh discretization 00012260
3 f 3 . # 0.00092167
* The distance r at which the load is applied must have nodes at that location. oouneas
The macro attempts to find nodes nearest that location (there is no node at on

r=28.62 mm). Increasing the mesh density will increase the accuracy here

We Make Innovation Work
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Solution for Model 2: Statically Equivalent Retainer Model

e Assuming the diaphragm carries a moment load

PADT

Now, suppose that the diaphragm material is not made of an elastomer (or that it operates at a low temperature —below
its glass transition)

In that case, the working diagphragm can be expected to transmit a moment load to the retained region, so the free-body
diagram of slide 14 must be modified as below

This is probably a good time to remind readers that there are two related free-body diagrams here: The excluded region
on the left, and the retained region on the right.

Before, when when the exluded region couldn’t transmit moments, the two regions were statically determinate

But now, the excluded region is statically indeterminate (in the same way that the fixed-fixed beam of slides 8 and 9 are
statically indeterminate)!

Also, we can’t use a beam solution to determinate the transmitted moment, My (see slide 10)

We have to turn to plate theory!

* excluded region * retained region

“Q

We Make Innovation Work
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I Solution for Model 2: Statically Equivalent Retainer Model

e Assuming the diaphragm carries a moment load

* Because plate theory is a bit beyond the scope of this article, we’ll just point readers to our source (p 166 —
167) and provide key result we’ll need below

p :
) = ———(r2 —R'? * The transverse deflection of the plate
ealerv ) ;
where D is the Modulus of Flexural Rigidity given by:
Et3
D = * tisthe plate thickness
12(1 — v?2) 2

* The plate circumferential moment

SOl e 17
M, =— (R A+v)-@+ v)rz) 5% (per unit length)

16
1 12
Mg = 6 (R (1+v)— (@A +3v)r ) (18) . The plate radial moment (per unit
length)
* |tisimportant to note here that the direction indices above use a convention that is opposite to that

used in Ansys (and in most discussions of vectors)
* Thus, the moment M, refers to the moment vector in the 8 direction because the ‘r’ refers to the corresponding

Ao, . d? : . ‘ ’
strain direction (analogousto M = —Eld—xz from beam theory. This vector points ‘out of the plane’) I

We Make Innovation Work
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I Solution for Model 2: Statically Equivalent Retainer Model

e Assuming the diaphragm carries a moment load

* Now, we can use equations (17) and (18) to determine the transferred moments at r=R’:

R'?
M, = — p (19) <+ The plate circumferential moment at
8 r=R’ (per unit length)
12
My = — pVR (20) * The plate radial moment at r=R’ (per
8 unit length)

e Since these are provided on a per unit length basis, we can convert
them to a full 360° basis by multiplying them by 2rnR’:

M. = pmR" (21) * The plate circumferential moment at
F gy ’
4 r=R
TVR'3
My = — & (22)  « The plate radial moment at r=R’

4

* Finally, we’ll note that the plate’s transverse shear per unit length, V is given by:

Peasy pr (23) ¢ The plate transverse shear per unit
2 length

We Make Innovation Work
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I Solution for Model 2: Statically Equivalent Retainer Model

e Assuming the diaphragm carries a moment load

* Equation (23) assures us that the diaphragm transmitted axial load F is the same as before (by using

equation (23) to calculate the shear at r=R’, we again obtain F = pmR'? on a full 360° basis)
* So, we can now avoid the mistake of slides 8 and 9 by substituting in the values of F and My calculated from

plate theory into the free-body diagram:

e excluded region * retained region
Vi
R {/f" ) !
L !
R’ »l
Muc r Mg ‘ i 0
.D F :

TR

s Mo = pnR"3
ZM=—MR—FE—FE(I—E)+m=D (24) R 4
F = pnR"
ZF=F+E—U=G (29) F, = pn(R*—R'?)

We Make Innovation Work
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I Solution for Model 2: Statically Equivalent Retainer Model

* Assuming the diaphragm carries a moment load: Solution 3

* Now, we can’t replace the pressure, p and force F with an equivalent load, f as was done on slides 18 — 20
(solution 2)
The reason is that equation (16) on slide 17 becomes:

pmR"3 NS
P +Fl+Fl(l 2) (26)
(F + F)
* Making all the substitutions (see slide 19) results in:
x = 10.788 mm
e or: f * retained region model

r =385 —10.788 = 27.711 mm

* Inother words, r < R’ and so is no longer within the excluded region
e This means we have to retain F and p, and find a way to additionally
apply the moment My as in the figure at right

We Make Innovation Work
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Solution for Model 2: Statically Equivalent Retainer Model

* Assuming the diaphragm carries a moment load: Solution 3a

PADT

To create the retained region model, we proceed as before, and simply duplicate the model of slide 25 and suppress the
working diaphgragm

And again, we use a macro to apply JUST the moment load (keeping in mind what we learned on slide 24)

Note that the macro relies on the rotational degrees of freedom of the shell elements representing the retained
diaphragm region in order to apply a moment load directly on a single circle of nodes in the cylindrical coordinate system
(recalling also the sign convention: My should be applied in the 8 direction, while Mg should be applied in the r-direction)

D: 1/6 symmetry dum my elastic imm shelll no diaphragm
Static Structural

Time: 1.3

9/2/2024 326 PM

~(0.1)(3.14159 ...)(28.2)°

B F/6 R = 293.55 Nmm
B Force: 41641 4 X 6
(0.1)(3.14159...)(0.3)(28.2)3 38 0LE N
0= = d mm
4 %6
p = 0.1 MPa
S
@ Material N
: e Cc-aor;i::be Systems 2 ’;ﬁ:e?ﬁ e i
u/@ Symmetry 10 3llsei,1;elau, elem
«an' Connections 11  esys, 12
e h 2 rotat,
(@ :I::'led Selections 13 :ICZ ;-ill
5[ Static Structural (E5) 14 mnsel,r, loc,x, 28.€24
IE) AnalyssSettngs - pE e
7

& Pressure 17
@ Fixed Support 1e
@ Force 53
E" commands (APDL)_solution3a i
E" Commands (APDL)_solution3b =2
=+, Solution (E6)

«.E! Solution Information
‘/Q Total Deformation 2

£,a8ll,my,293.553/nn
£,211,mx,38.066/nn

allsel,
fso0lu

AN i e A TARTMY, cnlidlanda? o W PP
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Solution for Model 2: Statically Equivalent Retainer Model

* Assuming the diaphragm carries a moment load: Solution 3a

* Comparing the maximum deflection of the lip (below right) to that of the full model (below left):

C: 116 sym metry dummy elsatic 1 mm shell diaphragm

Total Deforrmation 2 D: 116 sym met.rj.r dummy elastic 1mm shelll no diaphragm
Type: Total Deformation Total Deforrmation 2
Unit: rm Type: Total Deforrmation
Tirme: 15 Unit: mm
Q272024 3:13 P Tirme: 15
0.0076541 Max 07272024 337 P
0.0088037
0.0059532 0.0074851 Max
0.0051028 0.0066534
0.0042323 0.0058217
om0 ocusno
0.0017009 0.0041384
0.00085046 00033267
0 Min 0002495
0,001 6634
Q00023168
0 Min

* Retained region model § = 0.007485 mm
* Full model 6§ = 0.007654 mm
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Solution for Model 2: Statically Equivalent Retainer Model

* Assuming the diaphragm carries a moment load: Solution 3b

* One ‘check’ of the model of solution 3a is to apply the moment reactions obtained by the post-processing macro of
model 2 (shown below right)

D: 1/6 sym metry dummy elastic 1mm shelll no diaphragm
Static Structural

Time: 1.5

0/2/2024 3:26 PM

- Pressure: 0.1 MPa

. Fixed Suppart
. Force: 41,64 N

MNamed Selections
Static Structural (E5)
H] Analysis Settings
| Pressure
i Fixed Support
Force
- Commands {APDL)_solution3a
%[5 Commands {APDL)_solution3b
) Solution (E6)
: E‘ Solution Infarmation
88 Total Deformation 2

A e e e AL TARRIY calidiaada e T e

We Make Innovation Work
www.padtinc.com

==

10
11
1z
13
14
15
16
17
1B
15
20
21

fprep’?

cmsel, s, membrane
allsel,kelow,elem
csys, 12

nrotat,all
tr = 0.1

nsel,r,loc,z,4
*get,nn,node, , count
£,all, my,253_.553/nn
£,all,mx, 38 _066/nn
allsel,

/solu

Iselection ©
nsel,r loc,x, 228 . E245—tcr 28 _€245+tr

stline ws
Name | Searcl line | v
~/ B Geometry
8 Materials
i Coordinate Systems
/[ Symmetry
Connections
@ Mesh
& Named Selections
1 static Structural (B5)
s 111] Analysis Settings
5. Pressure
@ Fixed Support
/. Commands (APDL)
=1/ Solution (B6)
[ Solution Information
L. /@ Total Deformation
i@ Total Deformation 2
i 88 Total Deformation 4
LB Commands (APDL)

[N R R

F/6

s w B OX

ails of "Commands (APDL)" - ~aOx
File

File Name

File Status | File not found

Definition

Suppressed Ho

Output Search Prefix | my_

Invalidate Solution | Na

Target | Mechanical APDL

Input Arguments

ARG1

ARGZ

ARG4

|

I

ARG3 [
L |
ARGS [

1

TTaRGE

reselect o

COMANES e iei ottt

B

Geometry | Commands

£ils, 75t
set, last
esys, 12

280.21 Nmm
32.67 Nmm

keyw,pr_sgui,l
nd = ndnesxt (0)

nsel,r,,,nd
=sln

esel, r ename, , shel1181
*get, ecount, elem, , count
esel, r,cent, 2

p = 0.1 MPa

*if,ecount,gt,1, then
esel,r,,, elnexc(0)

“endif

spoint,nd

fsum, rsvs|

‘get, rmom (i, 2) , fsum, , item, my

*get, rmom (i, 3}, fsum, , item, me

Results

*get, rmom(i, 4), fsum, , item, £z
zmom{i, 1) = nd
cmsel, s, ntemp

my_mx 32.67

nd = ndnext {nd)
e 280.21
keyw,pr_sgui, 0

my_my

my_fz 42.073




Solution for Model 2: Statically Equivalent Retainer Model

* Assuming the diaphragm carries a moment load: Solution 3b
* Comparing the maximum deflection of the lip (below right) to that of the full model (below left):

C: 116 sym metry dummy elsatic 1 mm shell diaphragm

Total Defarrmation 2 E: 116 sym metnr dum my elastic 1Tm m shelll no diaphragm solution 3
. Total Deforrmation 2
Type: Total Deformation .
. Type: Total Deformation

Unit: mm Unit:

. it mrm
Tirne: 1 3 Tirme: 15
Q7272024 313 P

10/15,/2024 752 P

0.0076541 Max 0.00 72748 Max

0.0062037 00064665

0.0059532 0.0056582

0.0051028 0.0048409
0.0042523 00040476
0.0034 8 0.0032332

0.0025514 0.0024249
0.0017009 0.0016166
0.00085046 0.00020371
0 Min 0 Min

* Retained region model § = 0.00727 mm
* Fullmodel 6 = 0.007654 mm

* The main reason for this discrepancy is the mesh resolution of the full model
(model2) from which the moment reactions were extracted. It differs from the
theoretical result by 4.5 percent (280.21 MPa vs 293.55 MPa over the 1/6 sector)
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The table below summarizes all the estimates in this article

Thanks to Pablo Alvarez of Sol Aero for his suggestion of using Roark's Formulas for Stress and Strain for more verifcation

of the retained model deflection

Solution Summary: Statically Equivalent Retainer Model

Estimated
Transverse load [MomentLoad (Transverse
(N: 1/6 sector (N-mm: 1/6 Deflection
Model hasis) sector basis) |{mm) MNotes
Full {diaphragm + retainer) 1/6 symmetry: model 1: Slide 14, Transvers shear and
Rubber Diaphragm (no momenttransfer] [41.6 Mone 0.002765|pressure only. Workbench system A
Full {diaphragm + retainer) 1/6 symmetry: model 2: Slide 15. Tramsverse shear,
Dummy Linear Diaphragm (no moment pressure, and moment loading.
transfer) 41.6 293.55 0.00765|Workbench system B
Retained region 1/6 symmetry {no moment solution 1. Slide 18. Transverse shear and
transfer) 41.6 Mone 0.00286 | pressure only. Workbench system C
Retained region 1/6 symmetry (no moment solution 2. Slide 21. Transverse shear and
transfer) 41.6 MNone 0.00289 | pressure only. Workbench system D
solution 3a. Slide 28, Transverse shear,
Retained region 1/6 symmetry |includes pressure, and moment loading.
moment transfer) 41.6 293.55 0.00749|Workbench system E
solution 3b (loads calculated by
Retained region 1/6 symmetry |includes macro).Transverse shear, pressure, and
moment transfer) 42 260.21 0.00727|moment loading. Slide 30. Workbench
Appendix B: Transverse shear, pressure,
41.6 293.55 0.00726)and moment loading. Roark's Estimate

Retained region full 360 {Roark's estimate)

We Make Innovation Work
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https://jackson.engr.tamu.edu/wp-content/uploads/sites/229/2023/03/Roarks-formulas-for-stress-and-strain.pdf

PADT

Summary

In this article, we looked at how to determine statically equivalent loading of a region within a
structural finite element model in such a way that it could be analyzed in isolation

We first discussed the preconditions for doing this in general (see slides 3- 7). We learned, for
example, that this can’t be done in situations where the excluded region’s stiffness contribution
can’t be ignored. In those situations, engineers should consider submodeling or substructuring.
We also discussed common pitfalls engineers face when performing moment and force equilibrium
calculations for finite element models (see slides 8 — 11). Perhaps the most common mistake
engineers make is treating statically indeteminate models as though they are in fact statically
determinate. We point out that the working diaphragm model we wish to exclude is statically
indeterminate if it carries a moment load (see slide 21), and we overcame this limitation by solving
the associated differential plate equation for those diaphragms that carry moment loads.

In the end, we consider two kinds of working diaphragm (model 1 and 2 on slides 13 and 14): ones
that don’t carry moment loads (made of rubber, for example), and ones that do.

We offer two statically equivalent retained region solutions for the first case (solutions 1 and 2), and
a third solution for second case (solution 3)

We Make Innovation Work
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https://www.padtinc.com/2013/08/14/submodeling_ansys_mechanical/
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I Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

wW

iy, sl

<—LI—>‘ ’47 4.‘

* We want to model the fixed-fixed beam as two coupled cantllevers as shown above

* To do this, we'll couple the two beams using the Lagrange Muliplier approach (to
explicitly extract the coupling force and moment)

*  WEe’ll use two classical beam elements as shown below

YRS W PR E e 1 €5

We Make Innovation Work 1 2 4 6
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Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

Each beam is characterized by the degrees of freedom as shown below
and matrices k, u, and f as described here

- i S N e )
@j H lll Hl.@ oo BEL AR 6L 212
Cl D TR b Sy Rt e )
2 Y 2
% 0, v, + o, 6L 2L 6L 4L
u= [vl 91 vz Hz]T f= [Fl Ml FZ MZ]T

The forces and moments may be obtained from the distributed load, w as shown below
(see slide 31 of this reference):

Note that the equations produce an effective negative bending moment for positive w
(but w is negative in the figures we’ve been using, so we make the adjustments shown)

F, ([ —wL/2 ) L—WL/Z —WL/Zl
S
f = ’gzl _ w12 ey ( »

v —wl?/12 wi?/12
| M, | wi?/12
m We Make Innovation Work
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https://community.wvu.edu/%7Ebpbettig/MAE456/Lecture_5_Beam_Elements.pdf
https://mae.ufl.edu/nkim/eml5526/lect05.pdf

Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

* Next, we note that all degrees of freedom are fixed at nodes 1 and 4 (meaning that
vy =604 = v, = 0, = 0) leaving us with two the 2 x 2 system matrices shown below

O v @O O« ®
i

Sz Ly k Ly k, P
wolC 1)
vy l C 0, VorFs l ) Va 0,
GZ'MZ 93,M3
ElI{ 12 —6L, EI(12 6L,
k, =73 2 o TN oLy AT
Ll _6L1 4‘L1 L2 2 2
u =[v, 6;]" u, =[vz 6;3]"
f, =[-wL/2 wiL?/12]” f, =[-wL/2 -wlL?/12]"

We Make Innovation Work
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I Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

 We want to couple the two system matrices by coupling the degrees of

freedom such that u; = u, and introducing the Lagrange muliplier, A and
coupling matrix c:

kl ‘u1+C1‘A1:f1
kz-uz +C2‘A2:f2
c-u=20

e where A=[F M]"

* and the coupling matrix ¢ is determined as follows...:
 The degrees of freedom are coupled by imposing:

(U2 (0)
0, 0
vz—vg—o_)[l 0 -1 0]<v3>—<0>
03] \0J
« And: ) 0
6

U3 0
We Make Innovation Work
m www.padtinc.com \03) \0)




I Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

* The DoF coupling can be compactly represented with coupling

matrix, c:
ccu=d=0
* where
s 1 0 -1 O]
O 1 0 -1

* Finally, the coupled system is written as:
* Note that thisisa6x6

T
(k y ){;} i {(f)} system of equations —ready
e to be solved
* where:
_(ks O
S ( 0 kz)
u=1[u uy]’
f=[f; f]"

We Make Innovation Work
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I Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers
e Solving this system in Mathematica results in:

PLw(l — L)? (B12(21 — 3L) — Bo(l — L)%(2L + L))

Vol = o (E214 — 2EEql(l — L) (I — IL + 2L2) + E}(1 - L)%)
L ILw(l — L) (E2(l — L)*(1 + L) — E13(1 — 2L))
e
121, (E31* — 2E4Esl(I — L) (12 — IL + 2L2) + E3(1 — L)*)
vy = ?Lw(l — L)? (E11?(2l — 3L) — Ey(1 — L)*(21 + L))
241y (B34 — 2B Eal(1 — L) (1> — IL + 2L?) + E3(I — L)4)
ARtas ILw(l — L) (E2(l — L)*(1 + L) — E 3(1 — 2L))
i
121, (E3i* — 2E,Eyl(1 — L) (12 — IL + 2L2) + E3(I — L)*)
F= w(E —EiE)(—L)(2l — L) (* — IL + 3L*) + Ej(1 — L)®) i
2 (E14 — 2E,Eyl(1 — L) (12 — IL + 2L?) + E3(1 — L)% L)
M= w(EN—EE?(1— L) (2% —2IL +9L%) + E3(I - L)°) (A2)

m We Make Innovation Work 12 (E?fd — 2B Esl(l — L) (12 — 1L + 2L?) + E%(I — L)'i) I
www.padtinc.com




I Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

* The equations (A1) and (A2) now provide a convenient estimate for moment and
shear force transfer between beams of differing material!

* Furthermore, these equations provide us with a quantitative description of how
the Lagrange Multpliers (the coupling force and moment) compare with the shear

force and moment of beam 1 (F, = WTLl,MZ = wl?/12)

e This is important because users will naturally want to resort to the approximation
F~=F,and M ~ M, when E; K E,
* When E; = E,, we can use Equations (1) and (2) (from slide 5) to obtain:

L 78 0)
o o,
M

e M_2_1/16

e The graph on the next slide uses (A1) and (A2) to show the ratios F/F, and M /M,
as functions of E; /E,

We Make Innovation Work
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I Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

* Finally, setting E; = E, transforms the

Feresiloment Rati coupled-beam solution of slide 37 to:
- — il £
/____ F2 ( wli?(l—L)* )
0.8 e
" 24E. 14
' My wl(l—-L)(2l - L)
0 (172\ 12E111
0, wl?(l — L)?
0.4 oy
(SRR 24E1L )
:. F3 wl(l—-L)(2l - L)
kMJ 12E1]1
w
L —2l-L
5 TR 2 ( )
1
o %05 2
uzw(ﬁl 6IL + L?)

* Thus reproducing the original solution on slide 6
We Make Innovation Work
m www.padtinc.com



I Appendix B

Annulus Deflection Estimate (Roark’s Formulas for Stress and Strain)

* This article focused on estimating the deflection of the retained region of a structure using finite
element analysis

* However, the retained region of interest is a simple annulus.

* Because of this, we could also resort to closed-form analytical estimates for such a structure (the
axisymmetric plate solution we reference on slide 23 also easily admits solution of plates with a
hole —but we’d have to solve for some constants)

* As reader Pablo Alvarez of Sol Aero reminded us, one could also just ‘look it up’ in one of many
convenient tables of such solutions. We’d like to do that here to compare our deflection
estimates to those found by using tables.

* WEe'll use Roark's Formulas for Stress and Strain -Seventh Edition

 WEe’ll have to superpose the three linear solutions below

* annulus with a pressure load * annulus with a line load Sarngis s Rigment joag

Tt s 1 3o i i i "> -} : "'M{I: E: Moty

rQﬁ - e — &5 BV Vi o] i
I‘f ‘7 r%: -.I ""1r15'-| + CI'.H_H}'- ! :E:’:’::%/J[rj;: ® + {.T|; ___E__._ -_\:EIE - |'}

b B ‘1\ M - g — )

o ] -
a _ - bl "
Mote: If tho londing M, = on the meide

mdge, > r, ewerywhero, = (¢ rn;-u ]
vynrywhers
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https://jackson.engr.tamu.edu/wp-content/uploads/sites/229/2023/03/Roarks-formulas-for-stress-and-strain.pdf

I Appendix B

Annulus Deflection Estimate (Roark’s Formulas for Stress and Strain)

* We further have to look for our boundary conditions (fixed outer radius, free inner
radius). We want to estimte the deflection of the ‘lip’ (flange) feature, assuming that it’s

fixed at r=R’

* We find the following three expressions for the transverse deflection, y:

* moment load:

M,a?
— K. =
y Y7 p
e |ine load:
V,a3
— K
2 Ynp

e pressure load:

_ p aat
y =Ky

We Make Innovation Work
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v » excluded region  _

R fﬂ/i/’i

R

T

D is the flexural modulus (see slide 23), K, is the
transverse deflection stiffness (different for each
case as shown on the next slide)

V.., M,. are the transverse line load and
circumferential bending moment respectively

a is the radius to the base of the flange (R’)

0

..
] F

* retained region




Appendix B

Annulus Deflection Estimate (Roark’s Formulas for Stress and Strain)

* Looking up K,, for each of the three cases by interpolating from the corresponding tables and
plugging into the three formulas on the previous slide allows us to estimate the total transverse
deflection

* The details are captured in the accompanying spreadsheet “roarks_formuas_plate_w_hole.xIsx”

variable |value description [moment load at b defl. v
- - - ky 0.0045 0.0373| 0.88125
nu 0.300|Poisson’s Ratio b/a 0.9 0.7] 0.007847] -0.004361
t 1.000|thickness {[mm)
D 18315.018|flexural modulus (N mm)
p 0.100|plate pressure (MPa)
R' 26.200|diagphragm attachment radius (mm)
R 32.000|flange base radius (mm) : : ndlioatann defl v ° Compare the
Vr 1.410|plate transverse shear/unit length (slide 2: ky -0.0003| -0.0071] 0.88125 i 0
Mr 9.941|plate circum. moment/unit length (slide 24 b/a 0.9 0.7] -0.00034| -0.002365 deflection without
moment transfer to
values on slides14, 18
, and 21
uniform pressure defl. v
ky -0.00001| -0.0009| 0.88125
bia 0.9 0.7| -9.3E-03] -0.000535

* Compare the total
0007261 deflection to values on

Total
m We Make Innovation Work slides 15, 28 and 30
www.padtinc.com
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