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Static Equivalent Model 
Reduction in Ansys

Revision 2

10/22/2024:

1. Fixed typos on slides 4- 7 (L(1-L) corrected to L-l)

2. Equation (5) of slide 6 corrected to express the same solution as Equation (6): 끫뷾 = − 끫뢲2 끫롾−끫뢲 2끫룈24끫롰끫롰 . 

The original mistake was the result of a sign error

3. Corrected mis-statements about the resulting incorrect Equation (5).

4. Added slide 7 to address the case of differing materials.

5. Added summary table of results on slide 31

6. Added an Appendix A to justify slide 7

Added Appendix B for additional verification (Roark’s Formula lookup)

7. Added slides 29 and 30 for additional verification of theoretical moment and shear estimates for 

solution 3 (moments and shear instead obtained from  a new macro provided for model 2)

Important: The original version of this post incorrectly estimated the isolated cantilever (Equation (5) of slide 5) deflection using 

shear and moment estimtes (Equations (1) and (2)). This should always match the fixed-fixed beam solution of (Equation (4)). 

Comments that accompanied this error were also incorrect and corrected here. Our many thanks for Bekele Atnafu of Honeywell from 

alerting us to these errors. We’d also like to extend our thanks to Pablo Alvarez of Sol Aero for suggesting using Roark’s Formulas for 

additional verificiation –also now included in this revision

Alex Grishin, PhD

August 2024
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Background 

• Ansys users are often tasked with calculating a complex structural system’s response at a particular location 

which happens to be simpler in general than the rest of the model

• When this happens, it is tempting to perform hand-calculations –or at a minimum, to build a simpler model 

of the region in question subject to an equivalent load

• While straightforward in principle, the technical support crew at PADT have discovered over the years that 

customers often either encounter subtleties in the static equilibrium calculations –or the implentation of 

the resulting reduced model in Ansys

• Recently, a customer presented PADT with a model similar to that shown below

thin rubber 

diaphragm 

(green)

Steel retainer 

(grey)

bolts (12 x)

seal 

attachment

• Axisymmetric 

section

• The customer was interested here in the deflection (and stress) only in the seal attachment 

(which we henceforth call the ‘lip’)

• only interested in the 

deflection here

constant pressure 

loading (p) underneath 

the diaphragm
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Preliminaries 

• Since the customer was interested only the deformation and stress of the lipt, his question was: Can he 

model just the metal steel retainer with statically equivalent loads (resolving the constant pressure 

underneath the diaphragm into statically equivalent loads on the steel retainer as shown)

M F

• Before answering this question, we should first ask if 

this is possible in general. If so, what are the 

restrictions on such a model simplification?

• We might start by considering a simple fixed-fixed 

beam as below

• We know we can impose symmetry and only model 

half of it...

L/2

w

• half-symmetry 

boundary

• retained 

region

lip
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Preliminaries 

• ...but what we’re after is much more ambitious. We’re not simply utilizing symmetry to simplify a model

• We’re trying to model a geometrically arbitrary (but not mechanically arbitrary) section of it as shown 

below. Can we do this...?

• What we want to do is apply the load contributions from the section we’re not modeling to 

the section we are modeling

• Note that since we have the full analytical solution for a fixed-fixed beam, such a simplification 

isn’t necessary

• We’re going through this exercise just to see ‘if it works’ in more complicated situations. Many 

readers will already know the answer, but it’s worth going through the entire exercise to see

끫뢲
w

M V

끫뢲• Is it possible to just model this 

one truncated section (with a 

cantilever, say)?

• Model just the region 끫롾 − 끫뢲 ≤ 끫룊 ≤ 끫롾 while 

imposing loads from region 0 ≤ 끫룊 ≤ 끫롾 − 끫뢲

x’

• exclude this 

region
• retain this 

region

끫롾 − 끫뢲



We Make Innovation Work
www.padtinc.com

Preliminaries 

• Since we’re keeping section from L − 끫뢲 ≤ 끫룊 ≤ 끫롾, we can substitute 끫룊 = 끫롾 − 끫뢲 into the analytical expressions 

for for the transverse shear force and moment (which range from 0 to x=L from the left. Readers can find 

the expressions here ) 끫뢀 = 끫룈 6끫롾끫룊 − 6끫룊2 − 끫롾2 /12 (1)

끫뢒 = 끫룈 끫롾
2
− 끫룊 (2)

• The moment solution for a fixed-

fixed beam

• The Shear force expression for a 

fixed-fixed beam

• Transverse deflection of the cantilever 

of length l due to a combination of 

uniform distributed load w, force F  and 

moment M (the sign of the moment 

and F come from (1) and (2), while w is 

considered positive downward to obtain 

a negative deflection)

끫뷾 = − 끫룈끫룊224끫롰끫롰 끫롾 − 끫룊 2 (3) • The transverse deflection of the fixed-

fixed beam at x

(4)끫뷾 =
끫롲끫뢲33끫롰끫롰 +

끫뢀끫뢲22끫롰끫롰 − 끫룈끫뢲48끫롰끫롰

https://mechanicalc.com/reference/beam-deflection-tables
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Preliminaries 

• Now, compare the solution (4) to the full fixed-fixed beam solution (3) at 끫룊 = 끫롾 − 끫뢲:

• These are the same solutions!

• This problem was chosen as it’s the simplest satically indeterminate system we could think of

• The reason this works is that the cantilever solution (eq. 4) incorporates the Shear and 

bending moment calculations (equations (1) and (2)) used in the full fixed-fixed beam 

solution

• In other words, we are effectively calculating a ‘force-based’ submodel

• Substituting in the values for M and F=V and x at 끫룊 = 끫롾 − 끫뢲 into (4) yields:

(5)

(6)

• the cantilever solution:

• the full solution @ 끫룊 = 끫롾 − 끫뢲 끫뷾 = − 끫뢲2 끫롾 − 끫뢲 2끫룈24끫롰끫롰

끫뷾 = − 끫뢲2 끫롾 − 끫뢲 2끫룈24끫롰끫롰
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Preliminaries 

Prerequisites for Static Equivalent Model Reduction 
• The previous simple beam example demonstrates that we can discard portions of a model we’re 

not interested in IF we can characterize those portions as boundary conditions (with all degrees 

of freedom at such boundaries accounted for)

• If some stiffness components of the portion of the model we wish to exclude are negligible 

compared with the stiffness of the retained portion, we can relax the strict requirements above 

somewhat.

• For example: if the beam section 0 ≤ 끫룊 ≤ 끫롾 − 끫뢲 is made of rubber, while the beam section 끫롾 −끫뢲 ≤ 끫룊 ≤ 끫롾 is made of steel, the first section could be thought of simply transmitting a transverse 

load to the latter section

• As an illustration: if all regions of the model may be characterized by a linear constitutive law, 

and if the elastic modulus of the excluded region << than that of the retained region, we may 

approximate the shear and moment (1) and (2) as: 

끫뢒 = 끫룈 끫롾
2
− 끫룊 ≈ −끫룈(끫롾 − 끫뢲)

2끫뢀 =
끫룈 6끫롾끫룊 − 6끫룊2 − 끫롾2

12
≈ −끫룈 끫롾 − 끫뢲 2

12
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Preliminaries 

Prerequisites for Static Equivalent Model Reduction 

• So, there are essentially three prerequisites here for excluding a region with a different material 

than the retained region:

1. The stiffness components, ke of the excluded region of the model associated with unaccounted 

degrees of freedom, must be much less than the stiffness of the retained region, kr (ke << kr) in 

order to be negligible while still transmitting loads (assuming we can’t resort to a closed form 

solution encompassing both excluded and retained regions)

2. The load path of the full model must be known and faithfully reproduced in the reduced model

3. The retained model for which we calculate statically equivalent loads must behave linearly 

(which is not a requirement for the excluded region if we can solve its differential equation)

• Some readers may wonder when an approximation of the type made on the previous slide 

can be made.

• To provide more guidance, we offer a detailed derivation of a fixed-fixed beam system 

modeled by coupling two cantilevers using Lagrange Multipliers in the Appendix

• Even without consulting this solution, however, its quite clear that when all regions have the 

same elastic modulus, this appoximation results in a shear that is 33% higher than the true 

value. The moment, however, is a factor of 16 too high (these numbers are the reciprocals of 끫롲/끫롲2 and 끫뢀/끫뢀2 reported in the Appendix, respectively for the case 끫롰1 = 끫롰2).
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Common Mistakes 

• Before continuing, we should address some common mistakes engineers make when 

calculating force and moment equilibrium in engineering structures, so we’ll be careful to 

avoid these mistakes going forward

• Calculating moment reactions for statically indeterminate systems

• Because a distributed load may be represented by an equivalent force acting at the 

distribution centroid, its useful to reduce a structure with constant distributed load to 

one with an equivalent concentrated load

• But see what happens when you do this to a fixed-fixed beam...

끫롲 = 끫룈끫롾
MA MB

�끫뢀끫롾/2끫뢀 −끫룈끫롾2
4

−끫뢀끫롪 = 0

끫롲
2

끫롲
2

L/2

끫롲
2 MB

끫롲
2

M
• But since M=Mb:

−끫뢀끫롨= 끫뢀끫롪 =
−끫룈끫롾2

8

(7)

(8)

[1] [2]

• Considering 

half-symmetry:

https://engineeringstatics.org/distributed-loads.html
https://engineeringstatics.org/distributed-loads.html
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Common Mistakes 

• Equation (8) is wrong! Furthermore, the calculated midspan moment magnitude 끫룈끫롾2/4 in equation (7) is 

wrong, and M cannot be solved from MB. Both errors are due to the fact that this problem is statically 

indeterminate!

• We could summarize the fundamental mistakes as follows:

1. The shear/moment reactions of the beam with the uniform distributed load is not the same as the 

one with the concentrated point load (you can quckly compare the two solutions here),  so the 

move from [1] to [2] is wrong, but only because the problem is statically indeterminate. For 

determinate systems, this is a perfectly valid move.

2. Equating M and Mb (as pointed out above). Interestingly, although this is incorrect, it produces the 

correct moment magnitude at the boundaries (For [2]. Not for [1]. Even if the directions are wrong)

• Calculating moment reactions for statically indeterminate systems

• Treating an axisymmetric shell like a beam

• We will be calculating forces and moments for the retained portion of the diaphragm 

model (see slides 2 and 3) –which happens to be an axisymmetric membrane or plate

• The solution to this problem is to calculate shear and moments at boundaries using the 

appropriate beam-deflection solution (for a fixed-fixed beam under distributed load in this 

case). It is precisely the solutions for a fixed-fixed beam which tell us the solutions of the 

previous slide are wrong

https://www.purdue.edu/freeform/me323/wp-content/uploads/sites/2/2022/03/week08-notes.pdf
https://www.purdue.edu/freeform/me323/wp-content/uploads/sites/2/2022/03/week08-notes.pdf
https://mechanicalc.com/reference/beam-deflection-tables
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Common Mistakes 

• Treating an axisymmetric shell like a beam

•  Because of its simplicity, it is tempting to treat the axisymmetric diaphagm as a beam problem

• This is wrong! A correct analytical expression of the moment can only be found in the solution of 

a clamped axisymmetric plate under uniform pressure load (assuming it carries moments. See 

pages 166 – 167)

• Even if the diaphragm structure 

could be analyzed as a beam 

model (in which case, it would 

be a  clamped roller-fixed 

beam), we still have the same 

problem of static 

indeterminacy as we face with 

the fixed-fixed beam

• Just as the solution there was 

to turn to Euler-Bernoulli beam 

theory, the solution here is to 

turn to plate theory*

*beams simply don’t work here. 

Consider: How would one characterize 

the area moment of inertia (what 

value would it take on at r=0)?

• excluded region

• retained region

https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/Part_II/06_PlateTheory/06_PlateTheory_Complete.pdf
https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/Part_II/06_PlateTheory/06_PlateTheory_Complete.pdf
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Common Mistakes 

• Considering only force equilibrium (while neglecting moment equilibrium)

•  Some engineers will be tempted to believe that they can simply account for the excluded region 

(the working diaphragm) by accounting only for its axial force over the remaining diaphragm 

attachment region with a scaled pressure over that region

• This will underpredict the response of the retained structure by neglecting the moment 

contribution of the excluded region

• excluded region
• retained region

(9)
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The Model 

• We’ll first build a 1/6-symmetry (60°) finite element model of the structure described on slide 2

• We use shell elements for the diaphragm and solid elements for the retainer

• We use a 3-parameter Mooney-Rivlin material model for the rubber, and the default linear properties of 

structural steel

• Rubber Diaphragm

• working 

diaphragm: shell 

elements (rubber 

material - 1 mm 

thick)

• Retainer: solid 

elements (structural 

steel material)
R’

R R

R’ = 28.2 mm

R= 32 mm

R = 38.5 mm

• diaphragm connects directly 

to retainer (no contact)
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Model 1: Rubber Diaphragm 

• The model is fully fixed at the bolt holes as shown and pressure of 0.1 MPa is 

applied underneath the diaphragm

• Rubber Diaphragm

• Total deflection of 

the diaphragm is ~ 

8.5 mm

• But this (below) is the 

result we’re interested in

• Maximum deflection of the 

lip feature is 0.0028 mm

• We next want to build a model 

of JUST the ratainer (the 

‘retained’region) and apply a 

statically equivalent load 

transmitted by the (excluded) 

diaphragm
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Model 2: Linearly Elastic Diaphragm 

• Starting in slide 21, we’ll consider how to create a statically equivalent model for a diphgragm which transmits moment 

loads

• We start by creating a new 1/6-symmery model (we simply duplicate the original in Ansys)

• Then replace the diaphragm material with a linear one. We just create a dummy elastic material whose Young’s Modulus 

is 1/1000 that of steel (recall, that for this approach to be valid, the stiffness of the excluded region must be negligible).

• Again applying the same pressure (0.1 MPa) produces the following new result

• As most readers would suspect, because the linear shell transmits the full moment of the working diaphragm, the 

resulting displacement is much greater at the steel retainer. The maximum deflection at the lip 끫뷾 = 0.00765 끫뢴끫뢴

• Assuming the diaphragm carries a moment load
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Solution for Model 1: Statically Equivalent Retainer Model 

• We’ll first assume that, being made of rubber, the working diaphragm can not transmit any moment load

• The solution in this case is quite simple (note that the excluded region is statically determinate –so we dont’ need to 

appeal to any membrane equations for the boundary reactions!)

• Below, F
l
 is the equivalent load due to the pressure under the lip feature (length s), while F is the transmitted axial load 

from the working diaphragm

• Moments are summed about the bolt-center radius R.

• Note that if we keep the diaphragm pressure, p under the lip in the retained model, then the only additional calculated 

force we need to apply to the retained model is 끫롲 = 끫뢺끫븖끫뢊𝑅2 (the equivalent load 끫롲끫뢲 is represented by the pressure, p. See 

next slide)

• Assuming the diaphragm carries no moment load

• excluded region • retained region

0
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Solution for Model 1: Statically Equivalent Retainer Model 

• Substiuting in the model’s dimensions to calculate the diaphragm transmitted axial load F  of ~249.8 N. But 

this must be divided by 6 (below) for the 1/6-symmetry model:

• Thus a pressure of 0.1 MPa and 41.64 N are applied  as shown below

• Assuming the diaphragm carries no moment load: Solution 1

• retained region model

끫뢺 = 0.1 끫뢀끫뢀끫뢀끫롲 =
(0.1)(3.14159 … )(28.2)2

6
= 41. 64 끫뢂

끫롲 끫롲/6
p
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Solution for Model 1: Statically Equivalent Retainer Model 

• We can see how well this works in practice below

• The 1/6-symmetry retained model is identical with the retained region of the combined model (slide 15. 

The retained model was created by simply copying the model of slide 15 and suppressing the diaphragm)

• Assuming the diaphragm carries no moment load: Solution 1

• Compare this solution (below left) to the full 

model solution (below right)

• Retained region model 끫뷾 = 0.0028625 끫뢴끫뢴
• Full model 끫뷾 = 0.002765 끫뢴끫뢴
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Solution for Model 1: Statically Equivalent Model of Retainer 

• Some readers may find the solution of slide 5 and 6 so simple as to be trivial (and it may be)

• However, compare it to the incorrect solution of slide 11 (equation (9))

• Both solutions apply the same load. But by dividing this load by the lip area and applying it as a pressure as on slide 11 , the moment equilibrium 

of equation (10) is not satisfied. Doing so effectively applies the load F at the location 끫뢲 − 끫룀/2 (recall that for determinate systems, distributed 

loads act at their centroid), which will result in a smaller response (not shown. But readers are encouraged to try this with the Workbench model 

that accompanies this article)

• We may test this idea further by replacing both the diaphragm pressure under the lip AND the transmitted axial load of the excluded region with 

a single calculated effective axial load, f which satisfies both force and moment equilibrium

• Assuming the diaphragm carries no moment load: Solution 2
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Solution for Model 1: Statically Equivalent Model of Retainer 

• Assuming the diaphragm carries no moment load: Solution 2

• Substituting in model dimensions to the expressions for 끫롲,끫롲끫뢲, 끫뢦, 끫뢲, 끫룊, 끫뢾:끫롲 = 끫뢺끫븖끫뢊𝑅2 = 0.1 3.14159 … 28.2 2 = 249.8 끫뢂끫롲끫뢲 = 끫뢺끫븖 끫뢊2 − 끫뢊𝑅2 = 0.1 3.14159 … 322 − 28.22 = 71.87 끫뢂끫뢦 = 끫롲 + 끫롲끫뢲 = 321.7 끫뢂
끫룊 =

끫롲+끫롲끫뢲 끫뢲−끫롲끫뢲끫룀2끫롲+끫롲끫뢲 =
321.7 10.3 −(71.87)

3.82321.7 = 9.88 끫뢴끫뢴
끫뢲 = 끫뢊 − 끫뢊′ = 38.5 − 28.2 = 10.3 끫뢴끫뢴끫룀 = 끫뢊 − 끫뢊′ = 32 − 28.2 = 3.8 끫뢴끫뢴 • see slide 12

끫뢦
r

0

R

x

끫뢾 = 끫뢊 − 끫룊 = 38.5 − 9.88 = 28.62 끫뢴끫뢴
• Because the load, f is applied at 

calculated distance r, we apply it 

with an APDL macro (the load F and 

pressure p are suppressed )

• retained region model
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Solution for Model 1: Statically Equivalent Model of Retainer 

• Assuming the diaphragm carries no moment load: Solution 2

• We can check this new calculated effective force f by replacing the force and pressure applied in the 

previous model (we suppressed them below) with an APDL macro which applies the load f at the correct 

radial location, r =R - x

• retained region model with original loads 

suppressed and macro applied

• Comparing again (right) to the original 

model (below right):

• Retained region model 끫뷾 = 0.002896 끫뢴끫뢴
• Full model 끫뷾 = 0.002765 끫뢴끫뢴

• The increased error has to do with the mesh discretization

• The distance r at which the load is applied must have nodes at that location. 

The macro attempts to find nodes nearest that location (there is no node at 

r=28.62 mm). Increasing the mesh density will increase the accuracy here
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Solution for Model 2: Statically Equivalent Retainer Model 

• Now, suppose that the diaphragm material is not made of an elastomer (or that it operates at a low temperature –below 

its glass transition)

• In that case, the working diagphragm can be expected to transmit a moment load to the retained region, so the free-body 

diagram of slide 14 must be modified as below

• This is probably a good time to remind readers that there are two related free-body diagrams here: The excluded region 

on the left, and the retained region on the right.

• Before, when when the exluded region couldn’t transmit moments, the two regions were statically determinate

• But now, the excluded region is statically indeterminate (in the same way that the fixed-fixed beam of slides 8 and 9 are 

statically indeterminate)!

• Also, we can’t use a beam solution to determinate the transmitted moment, 끫뢀끫뢊(see slide 10)

• We have to turn to plate theory!

• Assuming the diaphragm carries a moment load

0

• retained region• excluded region
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Solution for Model 2: Statically Equivalent Retainer Model 

• Because plate theory is a bit beyond the scope of this article, we’ll just point readers to our source (p 166 – 

167) and provide key result we’ll need below

• Assuming the diaphragm carries a moment load

끫뷾 끫뢾 = − 끫뢺64끫롮 끫뢾2 − 끫뢊𝑅2 2
• The transverse deflection of the plate

where D is the Modulus of Flexural Rigidity given by:끫롮 =
끫롰끫룂3

12 1 − 끫븐2 • t is the plate thickness

끫뢀끫뢾 =
1

16
끫뢺 끫뢊′2 1 + 끫븐 − (3 + 끫븐)끫뢾2끫뢀끫븆 =

1

16
끫뢺 끫뢊′2 1 + 끫븐 − (1 + 3끫븐)끫뢾2

• The plate circumferential moment 

(per unit length)

• The plate radial moment (per unit 

length)

• It is important to note here that the direction indices above use a convention that is opposite to that 

used in Ansys (and in most discussions of vectors)
• Thus, the moment 끫뢀끫뢾 refers to the moment vector in the 끫븆 direction because the ‘r’ refers to the corresponding 

strain direction (analogous to 끫뢀 = −끫롰끫롰 끫뢢2끫룆끫뢢끫뢢2 from beam theory. This vector points ‘out of the plane’)

(17)

(18)

https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/Part_II/06_PlateTheory/06_PlateTheory_Complete.pdf
https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/Part_II/06_PlateTheory/06_PlateTheory_Complete.pdf
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Solution for Model 2: Statically Equivalent Retainer Model 

• Now, we can use equations (17) and (18) to determine the transferred moments at r=R’:

• Assuming the diaphragm carries a moment load

• Since these are provided on a per unit length basis, we can convert 

them to a full 3600 basis by multiplying them by 2끫븖끫뢊′:
• The plate circumferential moment at 

r=R’ (per unit length)

• The plate radial moment at r=R’ (per 

unit length)

• Finally, we’ll note that the plate’s transverse shear per unit length, V is given by:

(21)

(22)

끫뢀끫뢾 = −끫뢺끫뢊𝑅2
8끫뢀끫븆 = −끫뢺끫븐끫뢊𝑅2
8

끫뢀끫뢾 = −끫뢺끫븖끫뢊𝑅3
4끫뢀끫븆 = −끫뢺끫븖끫븐끫뢊𝑅3
4

(19)

(20)

• The plate circumferential moment at 

r=R’

• The plate radial moment at r=R’

끫뢒끫뢾 = −끫뢺끫뢾
2

• The plate transverse shear per unit 

length

(23)
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Solution for Model 2: Statically Equivalent Retainer Model 

• Equation (23) assures us that the diaphragm transmitted axial load 끫롲 is the same as before (by using 

equation (23) to calculate the shear at r=R’, we again obtain 끫롲 = 끫뢺끫븖끫뢊𝑅2 on a full 3600 basis)

• So, we can now avoid the mistake of slides 8 and 9 by substituting in the values of 끫롲 and 끫뢀끫뢊 calculated from 

plate theory into the free-body diagram:

• Assuming the diaphragm carries a moment load

• retained region• excluded region

끫뢺끫븖끫뢊𝑅3
4
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Solution for Model 2: Statically Equivalent Retainer Model 

• Now, we can’t replace the pressure, p and force F with an equivalent load, f as was done on slides 18 – 20 

(solution 2)

• The reason is that equation (16) on slide 17 becomes:

• Assuming the diaphragm carries a moment load: Solution 3

끫룊 =

끫뢺끫븖끫뢊𝑅3
4

+ 끫롲끫뢲 + 끫롲끫뢲 끫뢲 − 끫룀
2끫롲 + 끫롲끫뢲 (26)

• Making all the substitutions (see slide 19) results in:끫룊 = 10.788 끫뢴끫뢴
• or: 끫뢾 = 38.5 − 10.788 = 27.711 끫뢴끫뢴
• In other words, 끫뢾 < 끫뢊𝑅 and so is no longer within the excluded region

• This means we have to retain F and p, and find a way to additionally 

apply the moment 끫뢀끫뢊 as in the figure at right

끫뢦
r

0

R
x

R’

• retained region model

끫롲 p

끫뢀끫뢊
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Solution for Model 2: Statically Equivalent Retainer Model 

• To create the retained region model, we proceed as before, and simply duplicate the model of slide 25 and suppress the 

working diaphgragm

• And again, we use a macro to apply JUST the moment load (keeping in mind what we learned on slide 24)

• Note that the macro relies on the rotational degrees of freedom of the shell elements representing the retained 

diaphragm region in order to apply a moment load directly on a single circle of nodes in the cylindrical coordinate system 

(recalling also the sign convention: 끫뢀끫뢊  should be applied in the 끫븆 direction, while 끫뢀끫븆  should be applied in the r-direction)

• Assuming the diaphragm carries a moment load: Solution 3a

끫뢺 = 0.1 끫뢀끫뢀끫뢀
끫뢀끫뢊 =

(0.1)(3.14159 … )(28.2)3
4 ∗ 6

= 293.55 끫뢂끫뢴끫뢴끫롲/6

끫뢀끫븆 =
0.1 3.14159 … (0.3)(28.2)3

4 ∗ 6
= 88.066 끫뢂끫뢴끫뢴



We Make Innovation Work
www.padtinc.com

Solution for Model 2: Statically Equivalent Retainer Model 

• Comparing the maximum deflection of the lip (below right) to that of the full model (below left):

• Assuming the diaphragm carries a moment load: Solution 3a

• Retained region model 끫뷾 = 0.007485 끫뢴끫뢴
• Full model 끫뷾 = 0.007654 끫뢴끫뢴
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Solution for Model 2: Statically Equivalent Retainer Model 

• One ‘check’ of the model of solution 3a is to apply the moment reactions obtained by the post-processing macro of 

model 2 (shown below right)

• Assuming the diaphragm carries a moment load: Solution 3b

끫뢺 = 0.1 끫뢀끫뢀끫뢀
끫뢀끫뢊 = 280.21 끫뢂끫뢴끫뢴끫롲/6
끫뢀끫븆 = 32.67 끫뢂끫뢴끫뢴
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Solution for Model 2: Statically Equivalent Retainer Model 

• Comparing the maximum deflection of the lip (below right) to that of the full model (below left):

• Assuming the diaphragm carries a moment load: Solution 3b

• Retained region model 끫뷾 = 0.00727 끫뢴끫뢴
• Full model 끫뷾 = 0.007654 끫뢴끫뢴

• The main reason for this discrepancy is the mesh resolution of the full model 

(model2) from which the moment reactions were extracted. It differs from the 

theoretical result by 4.5 percent (280.21 MPa vs 293.55  MPa over the 1/6 sector)
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Solution Summary: Statically Equivalent Retainer Model 

• The table below summarizes all the estimates in this article

• Thanks to Pablo Alvarez of Sol Aero for his suggestion of using Roark's Formulas for Stress and Strain for more verifcation 

of the retained model deflection

https://jackson.engr.tamu.edu/wp-content/uploads/sites/229/2023/03/Roarks-formulas-for-stress-and-strain.pdf
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Summary

• In this article, we looked at how to determine statically equivalent loading of a region within a 

structural finite element model in such a way that it could be analyzed in isolation

• We first discussed the preconditions for doing this in general (see slides 3- 7). We learned, for 

example, that this can’t be done in situations where the excluded region’s stiffness contribution 

can’t be ignored. In those situations, engineers should consider submodeling or substructuring.

• We also discussed common pitfalls engineers face when performing moment and force equilibrium 

calculations for finite element models (see slides 8 – 11). Perhaps the most common mistake 

engineers make is treating statically indeteminate models as though they are in fact statically 

determinate. We point out that the working diaphragm model we wish to exclude is statically 

indeterminate if it carries a moment load (see slide 21), and we overcame this limitation by solving 

the associated differential plate equation for those diaphragms that carry moment loads.

• In the end, we consider two kinds of working diaphragm (model 1 and 2 on slides 13 and 14): ones 

that don’t carry moment loads (made of rubber, for example), and ones that do. 

• We offer two statically equivalent retained region solutions for the first case (solutions 1 and 2), and 

a third solution for second case (solution 3)

https://www.padtinc.com/2013/08/14/submodeling_ansys_mechanical/
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Appendix
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Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

• We want to model the fixed-fixed beam as two coupled cantilevers as shown above

• To do this, we’ll couple the two beams using the Lagrange Muliplier approach (to 

explicitly extract the coupling force and moment)

• We’ll use two classical beam elements as shown below

w w

x

y
L-l l

M FMF

1 2 3 4

v1 θ1
v2 θ2 v3 θ4

v5 θ6

끫롾1 끫롾2
w w
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Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

• Each beam is characterized by the degrees of freedom as shown below 

and matrices k, u, and f as described here

끫롈 =
끫롰끫롰끫롾3 12 6끫롾 −12 6끫롾6끫롾 4끫롾2 −6끫롾 2끫롾2−12 −6끫롾 12 −6끫롾6끫롾 2끫롾2 −6끫롾 4끫롾2

끫로 = 끫룆1 끫븆1 끫룆2 끫븆2 끫뢎 f = 끫롲1 끫뢀1 끫롲2 끫뢀2 끫뢎
• The forces and moments may be obtained from the distributed load, w as shown below 

(see slide 31 of this reference): 

• Note that the equations produce an effective negative bending moment for positive w 

(but w is negative in the figures we’ve been using, so we make the adjustments shown)

1 2

v1 θ1
v2 θ2

w

끫렾 =

끫롲1끫뢀1끫롲2끫뢀2 =

−끫룈끫롾/2−끫룈끫롾2/12−끫룈끫롾/2끫룈끫롾2/12

−끫룈끫롾/2 −끫룈끫롾/2

−끫룈끫롾2/12 끫룈끫롾2/12

https://community.wvu.edu/%7Ebpbettig/MAE456/Lecture_5_Beam_Elements.pdf
https://mae.ufl.edu/nkim/eml5526/lect05.pdf
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Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

1 2 3 4

v1 θ1
v2,F2

θ2,M2

v3,F3

θ3,M3

v4 θ4

끫롾1 끫롾2
w w

• Next, we note that all degrees of freedom are fixed at nodes 1 and 4 (meaning that 끫룆1 = 끫븆1 = 끫룆4 = 끫븆4 = 0) leaving us with two the 2 x 2 system matrices shown below

k1 k2

끫롈1 =
끫롰끫롰끫롾13 12 −6끫롾1−6끫롾1 4끫롾12 끫롈2 =

끫롰끫롰끫롾23 12 6끫롾2
6끫롾2 4끫롾22끫로1 = 끫룆2 끫븆2 끫뢎끫렾1 = −끫룈끫롾/2 끫룈끫롾2/12 끫뢎 끫로2 = 끫룆3 끫븆3 끫뢎끫렾2 = −끫룈끫롾/2 −끫룈끫롾2/12 끫뢎
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Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

• We want to couple the two system matrices by coupling the degrees of 

freedom such that 끫로1 = 끫로2 and introducing the Lagrange muliplier, 끫붘 and 

coupling matrix c: 끫롈1  � 끫로1 + 끫렸1 � 끫붘끫뾞 = 끫렾1끫롈2 � 끫로끫뾠  + 끫렸끫뾠 � 끫붘끫뾠 = 끫렾2끫렸 � 끫로 = 끫뾜
• where 끫붘 = 끫롲 끫뢀 끫뢎
• The degrees of freedom are coupled by imposing:

끫룆2 − 끫룆3 = 0 → 1 0 −1 0

끫룆2끫븆2끫룆3끫븆3 =

0

0

0

0

끫븆2 − 끫븆3 = 0 → 0 1 0 −1

끫룆2끫븆2끫룆3끫븆3 =

0

0

0

0

• And:

• and the coupling matrix c is determined as follows...:
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Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

• The DoF coupling can be compactly represented with coupling 

matrix, c:

• where

• Finally, the coupled system is written as:

• where:

끫렸 =
1 0 −1 0

0 1 0 −1

끫렸 � 끫로 = 끫렺 = 끫뾜

끫롈 끫렸끫룶끫렸 끫뾜 끫로끫붘 =
끫렾끫뾜

끫롈 =
끫롈1 끫뾜끫뾜 끫롈2끫로 = 끫로1 끫로2 끫룶

f= 끫렾1 끫렾2 끫룶

• Note that this is a 6 x 6 

system of equations –ready 

to be solved
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Appendix A

• Solving this system in Mathematica  results in:끫룆2 =

끫븆2 =

끫룆3 =

끫븆3 =

끫롲 =

끫뢀 =

(A1)

(A2)

Modeling a Fixed-Fixed beam as two coupled cantilevers
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Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

• The equations (A1) and (A2) now provide a convenient estimate for moment and 

shear force transfer between beams of differing material!

• Furthermore, these equations provide us with a quantitative description of how 

the Lagrange Multpliers (the coupling force and moment) compare with the shear 

force and moment of beam 1 (끫롲2 =
끫룈 끫롾12 ,끫뢀2 = 끫룈끫롾12/12)

• This is important because users will naturally want to resort to the approximation 끫롲 ≈ 끫롲2 and 끫뢀 ≈ 끫뢀2 when 끫롰1 ≪ 끫롰2
• When 끫롰1 = 끫롰2, we can use Equations (1) and (2) (from slide 5) to obtain:

•
끫롲끫롲2 =

34
•

끫뢀끫뢀2 = 1/16

• The graph on the next slide uses (A1) and (A2) to show the ratios 끫롲/끫롲2 and 끫뢀/끫뢀2 

as functions of 끫롰1/끫롰2
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Appendix A

Modeling a Fixed-Fixed beam as two coupled cantilevers

• Finally, setting 끫롰1 = 끫롰2 transforms the 

coupled-beam solution of slide 37 to: 

끫룆2끫븆2끫룆3끫븆3끫롲끫뢀
=

−끫룈끫뢲2 끫뢲 − 끫롾 2
24끫롰1끫롰1끫룈끫뢲 끫뢲 − 끫롾 2끫뢲 − 끫롾

12끫롰1끫롰1−끫룈끫뢲2 끫뢲 − 끫롾 2
24끫롰1끫롰1끫룈끫뢲 끫뢲 − 끫롾 2끫뢲 − 끫롾

12끫롰1끫롰1끫룈
2
2끫뢲 − 끫롾

1

12
끫룈 6끫뢲2 − 6끫뢲끫롾 + 끫롾2

• Thus reproducing the original solution on slide 6 
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Appendix B

Annulus Deflection Estimate (Roark’s Formulas for Stress and Strain)

• This article focused on estimating the deflection of the retained region of a structure using finite 

element analysis

• However, the retained region of interest is a simple annulus.

• Because of this, we could also resort to closed-form analytical estimates for such a structure (the 

axisymmetric plate solution we reference on slide 23 also easily admits solution of plates with a 

hole –but we’d have to solve for some constants)

• As reader Pablo Alvarez of Sol Aero reminded us, one could also just ‘look it up’ in one of many 

convenient tables of such solutions. We’d like to do that here to compare our deflection 

estimates to those found by using tables. 

• We’ll use Roark's Formulas for Stress and Strain -Seventh Edition

• We’ll  have to superpose the three linear solutions below

• annulus with a pressure load • annulus with a line load • annulus with a moment load

https://jackson.engr.tamu.edu/wp-content/uploads/sites/229/2023/03/Roarks-formulas-for-stress-and-strain.pdf
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Appendix B

Annulus Deflection Estimate (Roark’s Formulas for Stress and Strain)

• We further have to look for our boundary conditions (fixed outer radius, free inner 

radius). We want to estimte the deflection of the ‘lip’ (flange) feature, assuming that it’s 

fixed at r=R’

• We find the following three expressions for the transverse deflection, y:

Fr
Mr

p

• moment load:끫료 = 끫롼끫료 끫뢀끫뢾끫뢜2끫롮  

• line load:끫료 = 끫롼끫료 끫뢒끫뢾끫뢜3끫롮  

• pressure load:끫료 = 끫롼끫료 끫뢼끫뢜4끫롮  

• D is the flexural modulus (see slide 23), 끫롼끫료 is the 

transverse deflection stiffness (different for each 

case as shown on the next slide)

•  끫뢒끫뢾,끫뢀끫뢾 are the transverse line load and 

circumferential bending moment respectively

• a is the radius to the base of the flange (R’)
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Appendix B

Annulus Deflection Estimate (Roark’s Formulas for Stress and Strain)

• Looking up 끫롼끫료 for each of the three cases by interpolating from the corresponding tables and 

plugging into the three formulas on the previous slide allows us to estimate the total transverse 

deflection

• The details are captured in the accompanying spreadsheet “roarks_formuas_plate_w_hole.xlsx”

• Compare the total 

deflection to values on 

slides 15, 28 and 30

• Compare the 

deflection without 

moment transfer to 

values on slides14, 18 

and 21
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